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EXECUTIVE SUMMARY 
 
Annually, during the spring, for the past 10 years, groups of diligent volunteers 
have been collecting biological and environmental samples from intertidal 
locations in coastal British Columbia.  The Shorekeeper Program was initiated 
and has been continually supported by Fisheries and Oceans Canada (DFO).  It 
was conceived as an efficient way to monitor environmental quality in a portion of 
the coastal ecosystem with known sensitivities to human development while 
engaging the public in the regulatory process (Jamieson et al. 1999).  DFO has 
been responsible for the care of the data, once collected, the analysis, and 
reporting the results.  A review of the first three years of data evaluated sampling 
protocol and data quality, and made many relevant suggestions that led to 
constructive changes to the program (Jamieson et al. 2002).  The present study 
provides an additional review of the above parameters, as well as an assessment 
of the scientific validity of the program and its utility for resource management.  
The data examined in this study were collected from six sites by the Saanich Inlet 
Preservation Society between 1999 and 2008.  Observed spatial and temporal 
variability in biological characteristics were compared to known influences of 
common environmental drivers such as substrate, beach elevation and 
environmental exposure.  Recommendations that may guide future Shorekeeper 
protocols are provided. 
 
The six sites were dissimilar with substrate characteristics that varied from mud 
to bedrock and were distributed at elevations that differed among sites.  
Substrate character and vegetative cover varied temporally at some sites for 
reasons that were not readily apparent, except for possible correlations with 
differences in hydrological or meteorological exposure.  Over 13,000 individual 
organisms collected from 1937 quadrats were scrutinized using ordination 
techniques to identify a small suite of biological variables indicative of substrate 
type and tidal elevation.  Individuals were described as being present or absent 
to incorporate both percent cover and taxa count data into a single analysis.  
Taxa diversity was determined to be a valid metric to describe community 
structure and demonstrated a weak positive correlation with the range of habitat 
heterogeneity among sites.  Biological diversity did not increase in the presence 
of eelgrass as reported by other authors, likely a result of a sampling bias.  
However, diversity was higher in the presence of other vegetative cover types. 
 
The Shorekeeper Program provides a promising method to monitor taxa 
presence and biological community composition and measure environmental 
trends in shallow sloping intertidal habitats on Canada’s Pacific coast.  It provides 
a database from which to draw a subset of scientifically defensible indicators 
specific to substrate, elevation and site location.  The experimental design is less 
well-suited to measure acute environmental impacts but may serve to identify the 
reference condition in the event of future environmental alteration in the vicinity of 
Shorekeeper collection sites.  Nor is it well-suited as the primary source of data 
to examine ecosystem function or ecological processes.  This would require a 
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comprehensive description of environmental gradients and biological responses 
at a multi-trophic level, and are generally measured over a broad geographical 
range.  These requirements are beyond the scope of the Shorekeeper program 
particularly if it is operated in the absence of contextual knowledge.  A strong 
argument in support of the program and its volunteers lies outside the realm of 
scientific evaluation.  Enabling citizens to monitor marine ecosystems promotes 
conservation, protection and restoration of coastal habitats and their associated 
species, while providing a venue for feedback on public concerns.  To this end, 
this paper commends the citizen scientists of the Shorekeeper Program, while 
highlighting the results of their efforts and making recommendations that may 
increase fieldwork efficiency and improve data quality. 
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ABSTRACT 
 
Macdonald, J.S., and MacConnachie, S.  2011. An analysis of ten years of 

intertidal monitoring: Evaluating the biophysical data collected by the 
Saanich Inlet Shorekeepers Program. Can. Tech. Rep. Fish. Aquat. Sci. 
2957: xii + 42 p. 

 
Biophysical data collected from intertidal habitats in Saanich Inlet by the 
Shorekeepers Program were analyzed to document spatial and temporal 
patterns in taxa distribution.  This program was evaluated for its effectiveness as 
an instrument to monitor an important component of a coastal ecosystem which 
has received little formal scientific attention by the department.  In Saanich Inlet, 
as with most intertidal locations, beach elevation and substrate type had a 
fundamental influence on biological distributions.  Community assemblages that 
were influenced by these environmental gradients were chosen from 207 taxa 
categories collected during annual visits to six beaches for 10 years by trained 
volunteers.  They are proposed as indicators of a functioning intertidal 
ecosystem.  This program shows promise as a method to monitor taxa presence 
and biological community composition and to measure environmental trends in 
shallow sloping intertidal habitats on Canada’s Pacific coast.  Recommendations 
are made to increase fieldwork efficiency and improve data quality. 
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RÉSUMÉ  
 

Macdonald, J.S., and MacConnachie, S.  2011. An analysis of ten years of 
intertidal monitoring: Evaluating the biophysical data collected by the 
Saanich Inlet Shorekeepers Program. Can. Tech. Rep. Fish. Aquat. Sci. 
2957: xii + 42 p. 

 
Les données biophysiques recueillies dans des habitats intertidaux de l’inlet 
Saanich dans le cadre du Programme des gardiens du littoral (Pêches et Océans 
Canada) ont été analysées aux fins de documentation des profils spatiaux et 
temporels de la distribution des taxons. On a évalué l’efficacité du Programme à 
surveiller une composante importante d’un écosystème côtier ayant fait l’objet de 
peu d’études scientifiques officielles. Dans l’inlet Saanich, à l’instar d’autres sites 
intertidaux, l’élévation de la plage et le type de substrat avaient une influence 
fondamentale sur la distribution biologique. Des assemblages de communautés 
qui ont réagi à ces gradients environnementaux ont été choisis parmi 
207 catégories de taxons prélevés lors des visites annuelles à six plages par des 
volontaires formés, sur une période de 10 ans. On propose que ces 
assemblages servent d’indicateurs d’un écosystème intertidal fonctionnel. Le 
Programme se révèle prometteur en tant qu’instrument de surveillance de la 
présence des taxons et de la composition biologique des communautés ainsi 
qu’outil de mesure des tendances environnementales dans les habitats 
intertidaux inclinés et peu profonds du littoral pacifique du Canada. Les 
recommandations formulées visent à accroître l’efficience des travaux de terrain 
et à améliorer la qualité des données. 
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INTRODUCTION 
 
Canadians in coastal regions face numerous challenges to the sustainability of 
their coastal marine resources.  Shallow coastal zones, particularly those 
adjacent to industry and upland runoff, are subject to inputs of biological 
nutrients, heavy metals and hydrocarbons in concentrations that reflect the 
popularity of coastal property development (Nixon et al. 1986, Burd et al. 2008).  
Meade (1981) estimated that less than 5% of river-borne sediment reaches 
deep-sea habitats suggesting a record of human-derived inputs exists in coastal 
marine habitats on our coast.  Furthermore, invasive species, second only to 
habitat loss with respect to their impact on biodiversity (Sala et al, 2000), are 
frequently encountered in intertidal and shallow subtidal areas.  Non-indigenous 
species can have serious economic consequences including bio-fouling by 
tunicates, bryozoans and algae, intertidal invasions by bivalves and the 
introduction of intertidal predators such as the European green crab (Carcinus 
meanus). Habitats in developed areas are often subject to direct and indirect 
modification or destruction in response to sea-level rise and other sources of 
increased coastal erosion (Sobocinski et al. 2010).  The global threat of climate 
change may be manifested in coastal regions through alteration of currents, 
water levels and weather patterns (DFO 2010a).  Yet, shallow coastal habitats 
are highly productive.  Phytoplankton, the base of the food chain for many 
intertidal species, is most abundant in shallow water (Strickland 1983), and 
shallow water habitats offer protection as nursery areas for juvenile fish of many 
species in temperate locations (Macdonald et al. 1984 and Macdonald and 
Chang 1993).   
 
In Canada, the responsibility for the protection of these habitats and the fisheries 
they support rests with the Federal Department of Fisheries and Oceans (DFO). 
This is done through the Oceans Act, passed in 1997 which promotes an 
integrated, scientifically defensible and ecosystem-based approach rather than 
monitoring and regulating fish and fisheries in isolation of each other (DFO 
2005).  To be truly integrated, this approach must capture the relevant 
knowledge on a full range of trophic levels and habitats on which the floral and 
faunal assemblages depend, and be receptive to public participation into the 
decision-making process.  Increasingly, the department has sought public 
participation in scientific panels advisory groups and scientific inquiries, to aid in 
decision making, inform policy development and seek a deeper understanding of 
societal concerns (e.g.) PNCIMA - marine advisory technical team, Southern Gulf 
Island National Park Reserve - advisory committee).  More recently the public 
has also been engaged in field-oriented activities to acquire knowledge 
necessary to preserve, protect and enhance habitats (e.g. the Pacific 
Streamkeepers Program 2009) or develop a physical and biological inventory of 
local ecosystems as a step towards monitoring for natural or anthropogenic 
change (e.g. Community Aquatic Management Program, Thériault et al. 2006).  
By encouraging direct citizen engagement in science activities, the common 
pursuit of data exposes scientists, managers and the public to new knowledge. 



 

 
The Shorekeeper Program on Canada’s Pacific coast is another example of 
public integration into departmental interests.  It was developed in 1996 to 
monitor intertidal invertebrate and macroalgae communities on shallow sloped 
beaches on Canada’s Pacific coast.  Data were to be scientifically defensible and 
represent a range of carefully recorded substrates, elevations and exposures.  
Hosted by Fisheries and Oceans Canada, this program began as a draft 
background document (Smiley and Levings 1996) culminating into a 
“Shorekeepers Guide” three years later (Jamieson et al. 1999).  Since then, local 
community volunteers under the direction of trained leaders have followed the 
modules in the guide to perform annual biophysical collections, during extreme 
low tides in the spring, on numerous beaches from the northern coast of B.C. to 
the Saanich Peninsula (Figure 1a).  To be effective, this approach required 
methodological consistency over a broad spatial/temporal scale and was 
expected to generate large amounts of highly credible data. Three years into the 
program, an audit identified a number of shortcomings in the sampling 
procedures, the data quality and the approaches to data analysis.  Consequently, 
many modifications were made to the procedure (Jamieson et al. 2002).  
However, this audit did not address the overall utility of data collected by the 
Shorekeeper Program for use by resource managers or as a scientific database.  
Its value to discriminate community structure among sites, years and habitat type 
was not assessed, nor was its ability to identify acute or chronic environmental 
impacts.  Ultimately, the true value of this program rests on its relevance to 
ecosystem-based management goals and its ability to track patterns in marine 
environmental quality. 
 
Now, with access to 10 years of data, this report explores data collected from six 
sites in Saanich Inlet by one group of Shorekeeper volunteers, the Saanich Inlet 
Protection Society (SIPS)(Figure 1b).  It assumes that the critical program 
shortfalls identified in the previous audit were addressed with modifications to the 
procedures (Jamieson et al. 2002) and that QA/QC measures have ensured a 
database that accurately reflects soft and hard bottom intertidal community 
structure during spring low tides on southern Vancouver Island.  This report 
assesses the scientific defensibility and the overall utility of a Shorekeeper-based 
approach to measure ecosystem status and trends in support of Canada’s 
Oceans Act.  There may be a role for volunteers to contribute to State of the 
Ocean Reports as they apply to shallow coastal intertidal areas where the 
department has allocated little monitoring effort (DFO 2010a). 
 
 

METHODS 
 
The nucleus of the Shorekeepers’ Program was a monitoring protocol designed 
to enable members of the public to collect highly credible data for use by 
resource management agencies.  Leadership training procedures and technical 
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support for the volunteers was made available through contacts in DFO.  Data, 
once collected, was input, stored and analysed by DFO staff.  A 34 step protocol 
that covered numerous aspects of habitat monitoring including site selection, 
boundary definition, physical features, mapping and documentation of the plants 
and animals in each habitat, is carefully described in the guide (Jamieson et al. 
1999).  This guide includes modules describing data entry and report 
preparation, and provides a training curriculum for instructors.  For a detailed 
description of sampling methods and materials the reader is referred to this 
guide.  However, the authors wish to draw attention to selected procedures in the 
sampling design as they are pertinent to the assessment of the database and 
may be subject to modification. 
 
Surveys occurred once a year during late spring to take advantage of very low 
tides that occurred during daylight.  In this manner, biases associated with 
seasonal variation in intertidal community structure were minimized prior to 
making inter-annual comparisons, and comparisons among other factors (e.g. 
substrate type, elevation etc.).  Volunteers were encouraged to return to the 
same study area each year for three to five years to establish initial baseline data 
from which future samples could be contrasted.  Following this, a schedule with 
less frequent visits to the study areas could be established but SIPS has returned 
annually to some sites for more than 10 years. 
 
Site selection was based on the goals expressed by individual survey teams.  In 
the case of SIPS, the goal was to describe the ecology in local intertidal habitats 
and potential upland pressures, documenting changes in community structure, 
and ultimately estimating the overall health of Saanich Inlet.  Many other 
Shorekeeper groups were established on the Pacific Coast (n=20, Figure 1); 
each was encouraged to develop an individual focus.  In some cases, issues of 
interest for each group were specific, e.g., monitoring the impact of a local shore-
based industry or a fishing activity.  Other groups may have concern for particular 
plants, animals or their habitat, or simply a general interest in temporal changes 
to the environmental quality of an area.  All groups focus on intertidal samples.  
In practise, sites were likely chosen with consideration to access and personal 
preferences and were rarely selected randomly or with an interest in replicating 
environmental variables (e.g. habitat type, elevation etc.).  The six locations 
evaluated in this report represent a wide range of substrate types, exposures and 
beach elevations, and differed widely in the size of the area surveyed.  Upland 
activities that may influence the intertidal communities were also variable.  While 
the sites were not replicates or randomly selected they may have been 
representative of the area.  They were among a larger set of sites (n=10) 
sampled by SIPS that were the most consistently sampled over an extended 
period of up to 10 years.   
 
The SIPS did not initiate their program to measure the effect of a specific impact.  
They are using a monitoring design to provide baseline biological data that can 
be used to measure temporal trends and/or provide pre-impact or reference state 
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data against which departures in state can be measured once the time and 
location of the impact is known.  However, the volunteers completed an area 
description for each site (Form 2, Part 3 – Jamieson et al. 1999) that estimated 
the type, timing and degree of development in the upland area adjacent to the 
study site and in the watershed beyond where hydrological linkages may have 
influenced spatial and temporal variation in community structure.  These activities 
provide an opportunity to use the database to test the data’s sensitivity to 
environmental impacts with a more sophisticated before-after-control-interaction 
(BACI) impact study.  Should no impact be detected in association with these 
activities, an evaluation based on the known biological responses to intertidal 
habitat drivers and reference to intertidal assemblage surveys in the literature is 
a valid measure of Shorekeeper Program methods and database accuracy.  The 
program provided various habitat driver characteristics as a component to the 
collection procedure (e.g. substrate, elevation), and others such as current speed 
and wave exposure in aquatic ecosystems adjacent to each of the six sites were 
available through the DFO at the Institute of Ocean Science Sidney B.C. Canada 
(unpublished data, R. Thomson).  These data may not be available or in as high 
a resolution, at locations sampled by other Shorekeeper groups. 
 
Site boundaries were carefully surveyed and ranged in shoreline length from 50 
to 100m with consideration to the ability to assess an individual site in one day.  
Backshore and foreshore areas were categorized into a choice of one of 
nineteen discrete habitat units with a minimum size of 25m2, that combine 
estimates of both biological cover and substrate type.  In practise only eight 
habitat unit categories were commonly identified on the foreshore of the six 
Saanich sites (cover-type – step 13, Jamieson et al. 1998)(Rock-r, Cobble/Shell-
c, Sand-s, Mud-u, Fucus sp.-fa, Ulva sp.-ua, Zostera sp.-e, Macroalgae-oa).  A 
ninth unit, high elevation salt marsh (m), was identified less commonly (four 
years) at one of the sites.  A geological bottom type variable, substrate 
composition, was also recorded within each habitat unit as a list of five of thirteen 
most common base materials, from bedrock to mud (step 14).  Substrate type at 
individual quadrat locations was not recorded, but was assigned later to assist 
with data interpretation.  It was based on extrapolations from both the habitat unit 
and bottom type in which the quadrat was located.  Generating quadrat specific 
variables after-the-fact, created some unavoidable uncertainty particularly when 
assigning cobble or rock substrates to quadrats located in Fucus sp. or 
Macroalgae habitat units.  Elevations at the upper and lower boundaries of each 
habitat unit were measured based on a datum established at low water.  Slope of 
each unit was also calculated using a clinometer to measure elevation at the top 
and bottom boundaries.  Slope estimates of the entire width of each site were a 
mean of the slopes of all habitat units within the site for all years, with confidence 
limits (p=0.05).  Elevations of individual quadrats were not measured in the field 
but estimates for each were generated by extrapolation from upper and lower 
habitat unit elevations. The mean elevation of substrate categories at each site 
were plotted with measures of variation based on the elevations of quadrats 
within the category. 
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Quadrats were laid out on equally spaced transects at equally spaced intervals 
across the habitat unit.  The number of quadrats were chosen subjectively to 
maximize effort in habitats rich in marine life and tended to range from six to 
fifteen per habitat unit.  Large quadrats (50x50cm) were used in hard 
impenetrable substrates, smaller ones (25x25cm) in locations where bottom 
material could be exposed to a minimum of 10cm depth.  Bottom material once 
removed was sieved with a 5mm mesh to facilitate the collection of animals 
which were identified to the lowest possible taxonomic level in the field before 
being returned.   On occasion, unidentified plants of animals were preserved for 
positive identification at a later date but the vast majority of identification occurred 
in the field.  Biological abundance was recorded as counts if the taxa were 
mobile and not too numerous to count.  The abundance of attached plants and 
animals and those too numerous to count (e.g. barnacles) were estimated as 
percent cover in four categories (<25%, 25-49%, 50-75% and >75%).  Data 
forms used by volunteers to collect field records were later transferred to a 
Microsoft Access relational database and maintained by DFO representatives 
who were also responsible for the analysis and reporting of these data.  During 
this analysis a quadrat was the unit of replication for all investigations of species-
environment relationships. 
 
Geographical information system (GIS) technology was used to map the location 
of habitat units annually and provide estimates of the area of each.  Habitat 
characteristics as represented by geological substrate and vegetative cover were 
compared annually and among sites with a correspondence analysis followed 
with a plot of the two leading axes (Minitab 2007).  These results were also 
plotted using a traditional bar graph to provide additional resolution at specific 
sites and times.  The mean number of habitat units at each site were plotted with 
measures of variation among years as an estimate of site complexity and 
structural heterogeneity – factors responsible for species diversity assuming the 
species are habitat specialists (Ricklefs 1979). 
 
Once tabulated in a master file, the number of taxonomic categories was reduced 
in a two-step process to prepare for exploratory data analysis.  Taxa categories 
that were ill-defined were removed (e.g. ‘large white egg mass’) or combined in 
higher taxonomic categories in cases where they were taxonomically difficult to 
distinguish to the species level.  Taxa that occurred in less than 1% of the 
samples were then removed as they provided little biological information.  Taxa 
that were measured as quantitative counts (‘mobile’) were combined for analysis 
with taxa that were measured categorically (‘attached’) by dichotomization both 
into binary, presence-absence measurements. 
 
Following biological variable reduction the 55 taxa variables that remained were 
transformed into their scores on principal components (PC) to examine the 
structure of the entire database and to identify a subset of variables using the 
magnitude of the eigenvector coefficients as a measure of the contribution of 
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each variable to the major trends in the data.  The goal was to describe the entire 
community with fewer variables and perhaps identify indicators of habitat impact 
(Green 1979).  Scores for these biological principal components were plotted 
against environmental variables (i.e) substrate and quadrat elevation and other 
site characteristics) to examine relationships between taxa assemblages and 
their environment.  Plots of the first two principal components scores were also 
produced for a similar purpose.  The PC analysis was repeated individually with 
samples collected from the most common substrates, cobble, rock and sand.  By 
restricting further analysis to data within individual substrate strata a gradient 
defined by site was evaluated with the influence of substrate removed. 
 
The presence and absence database with the full complement of biological 
variables provided numbers of taxa per quadrat and therefore an estimate of 
species diversity.  Regressions measuring the response of biological diversity to 
sample elevation and to site complexity, provided insight into intertidal 
community organization.  Interval plots of mean annual taxa/quadrat with 
measures of variation described the influence of habitat type and other site 
characteristics on biological diversity. 
 
 

RESULTS 
 
Despite their geographic proximity, the six sample sites had dissimilar 
environmental characteristics.  Wave and wind exposure ranged from minimal 
levels at sites well within Saanich Inlet to medium or high levels closer to the 
inlet’s mouth (Figure 2).  Currents were largely weak within Saanich Inlet except 
near the mouth at the Moses site where tidal action provided currents 
approaching 0.04m/sec.  In the absence of empirical information, it is speculated 
that tidal mixing depressed temperatures and raised salinities in the late spring 
and early summer at Moses relative to the other sites, but the degree to which 
this influenced primary productivity is difficult to estimate (Strickland 1983).  
Cobble and Sand/Mud were the most common substrates and were encountered 
at all sites (Figure 3).  Substrate size declined from Hagan through Tseycum and 
Towner to TenTen which is reported as being composed of mud despite being 
categorized as sand most years (Figure 4).  Moses and Jimmy’s were the most 
consolidated, largely classified as rock or the vegetative cover that normally 
attaches to hard, stable surfaces.  They were also the smallest sites, primarily 
because they were the steepest (Figure 5).  Temporal habitat unit continuity 
existed at most sites with the exception of Moses where much of the low 
elevation habitat normally categorized as having quantities of macroalgae, was 
reported as bare cobble in 1999, 2000 and 2006, and Ulva sp. was more 
established in 1999 than during other years (Figure 4, Appendix 1). 
 
When land development occurred adjacent to the monitoring sites it was 
restricted to agriculture or residential subdivisions and the sites were usually 
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bordered by some form of vegetation (Table 1).  During the monitoring period a 
number of irregular events occurred at the sites either in the intertidal zone (e.g. 
clam harvest) or in upland watersheds (e.g. agricultural expansion) that were 
linked by hydrologic processes to the beaches.  These were minor impacts with 
no clear association with an alteration of invertebrate assemblages. 
 
During 10 years of data collection at six intertidal locations in Saanich Inlet citizen 
volunteers from the SIPS collected 13,079 individuals from 1937 quadrats and 
identified 207 plant and animal taxa categories.  One hundred and forty five of 
these taxa were categorized to the genus level or lower and several were 
identified as invasive or cryptogenic species (Table 2).  The reduced database of 
biological variables, when plotted in space defined by the first two principal 
components (Figure 6), provided meaningful information regarding the possible 
influence of several environmental variable gradients on intertidal community 
assemblages.  Of the eight taxa variables that loaded heavily on PCI (Table 3) 
six, including barnacles, limpets and mussels, responded positively to gradients 
in intertidal elevation (Figure 7).  This assemblage was more common on rock, 
cobble and beds of Fucus sp., which were common at higher elevations, than on 
unconsolidated substrates (Figure 8).  Conversely, the seventh and eighth 
variables, Zostera spp. and Macoma balthica., loaded negatively on PCI and 
were found at the lowest elevations on sand and in association with Ulva sp.  A 
second assemblage, composed of six taxa variables that loaded on PCII also 
deserve consideration as intertidal community indicators (Figure 6, Table 3).  
Four clam species, a polycheate and the grapsoid shore crab, did not respond to 
sample elevation (PCII, Figure 7), but were more commonly associated with sand 
and cobble than with any other substrate (Figures 6 and 8). 
 
The influence of elevation on community assemblages is confounded with 
vertical stratification of substrate type at most sites.  Rock occurred at the highest 
elevations, above cobble and both were above sand at the lowest elevation 
(Figure 9).  There were exceptions; bedrock was found at comparatively low 
elevations at Moses.  Similarly, the mean elevations of sand and cobble samples 
were not entirely comparable across all sites.  The relative amount of each 
substrate category also differed among sites (Figures 3 and 4, Appendix 1).  
Cobble and sand were universally represented and bedrock occurred at four of 
the six sites, but most commonly at Moses and Jimmy’s.  Further ordination 
treated these substrates independently removing them as a confounding 
influence in a comparison of biological assemblages among the six sites and ten 
years of collections. 
 
Among sites, particularly on rock and cobble substrates, Moses showed large 
temporal variations in biological communities (Figures 10, 11, 12, 13).  In 1999, 
2000 and 2006 an assemblage of Macoma balthica and a brittle star and many 
plants were prominent in cobble substrate at Moses (PCI -Table 4).  These were 
the years in which the habitat units normally classified as macroalgae were 
classified as bare cobble (Figure 4).  In most years, a mollusc deficiency 
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particularly bivalves distinguished Moses from other sites (PCII -Table 4).  On 
rock substrate, two of the plants taxa identified in cobble, Ulva spp. and 
Leathesia difformis, and the gastropod Batillaria cumingi, were more common at 
Moses than elsewhere (PCI -Table 5).  In sand substrate, TenTen and Tseycum 
were separated from each other and from the rest of the sites (Figures 14 and 
15); TenTen because of fewer molluscs and more Zostera spp. (PCI –Table 6) 
and Tseycum because of less Zostera spp., fewer Macoma balthica and 
sipunculid worms. 
 
Sites with greater habitat heterogeneity, as measured by the mean number of 
habitat units per year, tended to have greater taxa diversity (Figure 16).  Hagan 
was the exception to this relationship and needed to be removed for it to be 
statistically significant (P<0.05, Figure 17).  Taxa diversity was higher in cobble, 
Fucus and algae habitat units than in rock or Zostera, and was lowest in a small 
marsh noted at high elevation at Tseycum on four of the ten years of sampling 
(Figure 18).  Habitat elevation was potentially a confounding factor, not 
significant on its own because quadrats with few taxa were found at all 
elevations, but because the highest taxa counts were found at the lowest 
elevations on the beach in coincidence with macrophytes (Figure 19). 
 
 

DISCUSSION 
 
Based on this evaluation of the efforts of volunteers belonging to the Saanich 
Inlet Preservation Society, the Shorekeeper Program provides a promising 
method to monitor taxa presence and biological community composition of 
shallow sloping intertidal habitats on Canada’s Pacific coast.  These are habitats 
that warrant greater scrutiny by the regulatory agencies that are charged with 
their protection.  A recent Science Advisory Report on ecosystem status and 
trends in Canada’s marine ecozones, noted deficiencies in this kind of ecosystem 
information (DFO 2010a).  This Departmental review paper reports a paucity of 
structured or recurrent monitoring of intertidal habitats with the majority of 
monitoring that does occur targeted towards species of economic interest (e.g. 
clam surveys in intertidal locations) while excluding observations of other 
assemblages that live in association with the target species.  These opinions 
have been expressed for many years by coastal research experts.  Thomas et al. 
(1983) described intertidal community structure in the Quoddy region of southern 
New Brunswick as being poorly studied.  Similar opinions have been expressed 
regarding both intertidal and shallow subtidal habitats in southern B.C. (Burd et 
al. 2008) and Washington State (Sobocinski 2010).  
 
A well-executed Shorekeeper Program can address this information gap, using 
an approach that is reminiscent of early coastal surveys by Ed Ricketts, who has 
been called a “professional naturalist” (Hedgpeth in Ricketts and Calvin 1939).  It 
should be of no surprise that the beach elevation and substrate type, which are 
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fundamental factors in the biological distributions in Saanich Inlet, are two of the 
three environmental factors identified as having wide-spread geographical 
influence by Ricketts and Calvin (1968).   Smith and Carlton (1975) as editors to 
the seminal intertidal Light’s Manual, reinforce these fundamentals, adding detail 
to the environmental and physiological processes associated with variation in 
elevation.  The barnacles Chthamalus dalli, and Balanus glandula, and the 
gastropods Lottia pelta and Littorina sp., identified by PCI in figure 6, are 
commonly understood to be associated with hard substrates in mid to supra-
littoral zones (Ricketts and Calvin 1968, Thomas et al. 1983).  Similarly, the 
assemblage composed largely of common bivalves identified by PCII are likely 
indicators for soft unconsolidated substrates (Burd et al. 2008).  The fidelity of ten 
years of Shorekeeper’s data to the basic principles of intertidal distributions 
provides an indirect measure of confidence in the Shorekeeper’s approach.  In 
other words, in this study the expected response to the absence of a large 
habitat impact was an absence of atypical signals.  Therefore, the data collected 
by the Shorekeeper’s in Saanich Inlet is reliable; a finding common to the 
biological data collected by many volunteer-based programs (Cohn 2008).  A 
third environmental factor, exposure to wave shock, was more difficult to 
corroborate in Saanich Inlet on account of the narrow range of exposures 
represented by the six sites.  Most locations in the Saanich vicinity are classified 
as protected bays or estuaries with only modest levels of wave shock.  However, 
the Moses site may be exposed to currents and winds of sufficient strength 
relative to the other sites to be measurably different with respect to the biological 
community, having fewer of many penetrable sediment-dwelling species of 
bivalves.  Bertasi et al. (2007) demonstrated an inverse relationship between 
exposure to currents and settlement of macrofauna.  Moses may also be 
temporally less stable than the other sites, particularly Jimmy’s Beach.  If true, 
this was manifested in cobble and bedrock substrates in several years (e.g. 
1999, 2000 and 2006) when key members of the biological assemblages were 
sampled with greater frequency than other years; possibly a response to 
variation in annual wave shock or to increased tidal currents and associated 
exposure to nutrients. 
 
However, temporal patterns at Moses may be an artifact of sampling protocol, a 
function of uncertainty in the classification of cobble habitat among years (cobble 
vs macroalgae).  This may have added error to the estimation of the influence of 
substrate gradients on biological assemblages, exaggerating the temporal 
variation in habitats and underestimating the number of cobble-based samples.  
If substrate characteristics were recorded as part of the sampling protocol at 
each quadrat location (and stored as a separate substrate variable), there would 
have been no need to extrapolate quadrat-specific substrate data after-the-fact, 
and the quadrat records could be used to back-check the assignment of habitat 
unit locations.  Biological cover and substrate estimates, and even elevations, 
should be taken in association with individual quadrats during the field collections 
in recognition of their direct influence on biological distributions.  Quadrat 
locations should continue to be assigned to strata, defined solely by substrate, 
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but be randomized along transects to avoid violation of the statistical assumption 
of independence of errors (Zar 2010). 
 
The Shorekeeper Program exists primarily to monitor the intertidal environment, 
and could perhaps be modified to track intertidal invasive species.  Its also suited 
to collect baseline information for trend analysis (although project purpose was 
specific to individual Shorekeeper groups).  It is not particularly well suited as the 
pre-impact portion of an environmental impact study because the nature of the 
impact, its location and timing are not known (Green 1979).  Should it be called 
upon for pre-impact information, its long time series is beneficial, but the design 
(single collection/year) does not provide for the estimation of the copious 
seasonal variation common to these habitats (Ferraro and Cole 2007); this is a 
necessity for an optimal impact assessment (Livingston 1977).  A difference in 
sampling date by a few weeks among years could confound interannual 
comparisons (Jamieson et al. 2002).  Regardless, results from this study when 
examined with reference to contemporaneous anthropogenic actions enabled an 
evaluation of its sensitivity to environmental impacts.  For example, clam 
harvesting openings from 2002 to 2004 at Moses may have caused some 
declines in the population of the clam Macoma balthica but other non-target 
members (e.g. Ophiuroidea) of the same biological assemblage showed similar 
trends (Cobble - PCI).  Furthermore, during 2002 and 2003 populations of other 
common bivalves (e.g. Protothaca staminea) were unaffected and assemblages 
of clams in cobble at Moses were indistinguishable from other sites where, 
presumably, commercial harvests were not occurring (PCII).  However, in 2004, 
the last year of the harvest, the assemblage of common, commercial clams at 
Moses was at a level lower than at any other site.  At Jimmy’s Beach, neither 
eelgrass planting in 2001 or the loss of cobble during a winter storm in 2004 were 
measurable as changes to the community assemblages.  However, the minimal 
exposure to wind and currents at Jimmy’s relative to the other sites may have 
accounted for greater temporal stability, denoted by smaller ellipsoids on most of 
the principal component plots.  Anthropogenic activities adjacent to Tseycum in 
2003 and TenTen in 2004 were also undetectable in the biological record.  
Therefore, as a program to collect pre-impact data, Shorekeepers may not be 
ideal and is likely not a reliable gauge for ‘small’ local changes where natural 
fluctuations and sampling error overwhelm anthropogenic signals. 
 
Nevertheless, efforts by the Saanich Inlet Protection Society have produced a 
preliminary survey of intertidal species assemblages in several substrates in the 
protected waters of southern Vancouver Island.  They can also provide the 
baseline component for a hypothesis led study, to be called upon should major 
impacts befall this area or areas with similar physical characteristics in the inside 
waters of the Pacific coast (Silvertown 2009).  More importantly, they identify a 
number of potential indicator assemblages composed of far fewer variables than 
originally collected, and specific, by substrate and elevation, to southern 
Vancouver Island intertidal habitats.  A restricted focus on these indicators in 
future monitoring, could provide opportunities for each group of volunteers to 
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increase sampling efficiency, freeing up time to possibly broaden their 
geographical scope.  Techniques to reduce variable number to a subset of key 
species have long been seen as desirable in ecosystem investigations of 
multivariate data (Austin and Greig-Smith 1968, Spight 1976).  The 10 to 20 taxa 
variables that were identified via ordination accounted for a fraction of the overall 
variation in the matrices, but contained the greatest amount of information 
relative to other taxa in the original suite of variables.  A large amount of 
unexplained variation is common in environmental surveys and likely speaks to 
the dynamic nature of intertidal habitats and the influence of many interacting 
environmental factors (Ferraro and Cole 2007).  While this study was not able to 
demonstrate these taxa to be the most sensitive to impact effects, they were 
common to the areas sampled and are frequently of commercial value (e.g. 
clams).  They are also sedentary and thus relatively simple to sample (Blanchet 
et al. 2008).  Green (1979) extols molluscs as environmental indicators in fresh 
and saltwater for similar reasons.  He suggests, as do many others, that many 
are sensitive to a variety of pollutants (Burd et al. 2008), and physical 
disturbances (particularly Macoma balthica – Whomersley et al. 2010).  Other 
monitoring programs use inshore fish communities as indicators of change to 
ecosystem health because of their visibility and ease of identification (CAMP – 
Thériault et al. 2006).  The plethora of articles that review the efficacy of indicator 
taxa based on their sensitivity to a variety of human induced impacts should be 
consulted before selecting a final subset of key indicator variables (e.g. Kelso et 
al. 1977 or Dauvin 2007).   
 
In studies designed to examine the influence of environmental gradients on 
species distribution, the interpretation of results is often hampered by correlation 
among the predictor variables.  Studies such as this one, where transects cross 
environmental gradients are particularly susceptible to interdependence among 
variables (Green 1979).  Species distribution distinctions among Saanich Inlet 
sites were partially explained by site-specific substrate composition and further 
explained by the site-specific elevations where the substrate was found.  Thus for 
example, the biological assemblages typical of rock substrate were comparable 
among those sites where the high elevations were composed of rock, but were 
dissimilar at Moses where the rock habitat was at a lower elevation.  Improved 
selection protocol that seeks to replicate sites based on environmental similarity 
and to concentrate efforts on specific and easily defined strata within 
environmental gradients (e.g. clams in cobble substrate at 1-2m datum) could 
create a more efficient Shorekeepers’ Program that is more sensitive to impact 
detection (Elliott 1979).  Further efficiencies could be attained by adopting a less 
frequent sampling schedule at sites following the collection of three to five years 
of data successively.  Sampling effort could then be transferred to additional sites 
to increase the geographical coverage of the program (Jamieson et al. 1998). 
 
The Shorekeepers’ Program promotes the use of visual percent cover estimates 
for sessile organisms as a means to avoid time-consuming counts of abundant 
organisms or to quantify large amounts of algal overstory.  This approach is well 

  11



 

accepted and can actually provide superior results to measurements at random 
points within a quadrat (Dethier et al. 1993).  However, the inclusion of both 
continuous taxa counts and discrete percent cover data into the same analysis 
can only be done if both are expressed as binary values (Gilbert 1968).  Binary 
data is well suited for investigation by ordination, with little loss of useful 
information compared to similar analysis with taxa abundance (Norris and 
Barkham 1970).  A Shorekeeper program designed to collect only presence-
absence data could save the time normally spent counting individuals and may 
actually collect more ecologically relevant information on a per unit effort basis 
(Green 1979).  However, this may run counter to the original study goals where 
participants, from volunteers to scientists, may wish to measure and compare 
sites in terms of abundance, production or biomass. 
 
Taxa diversity is frequently reported as a simple means to define complex 
community structure (Ricklefs 1979).  Diversity, as described by many 
multimetric diversity indices that have been growing in complexity approaching 
that of the community they are meant to describe, have been used to document 
biological response to all manner of anthropogenic (Whilm and Dorris 1968, 
Blanchet et al. 2008) and natural habitat variation (Ferraro and Cole 2007).  
While many feel that diversity indices may unnecessarily complicate and obscure 
(Ricklefs 1979, Green 1979), taxa diversity (as simple counts of numbers of taxa) 
remains a biologically meaningful measure that may reflect interactions among 
species and their environment or among the species themselves.  Green (1979) 
describes a number of studies where displays of simple taxa number are used 
successfully to supplement other descriptors.  Of particular interest for the 
purposes of this study is a supposition that habitat heterogeneity has a positive 
effect on numbers of taxa (Poole 1974, Ricklefs 1979, Gray et al. 2002); a 
supposition weakly supported by the Saanich Inlet data if numbers of habitat 
units/site are used to represent habitat heterogeneity.  Paine (1966) found no 
evidence to support this theory in subtidal coastal habitats.  However, Burd et al. 
(2008), while examining subtidal benthos in Strait of Georgia, found number of 
taxa declined with increasing total organic carbon (%TOC) or total nitrogen which 
are thought to indicate declining habitat heterogeneity (Bernard 1978).  This was 
not the case near pulpmills and mine drainage sites where diversity was 
generally low.  Ferraro and Cole (2007) found a similar, albeit weaker, 
relationship between %TOC and taxa diversity on tidal flats in Willapa Bay in 
Washington State.  They also describe greater taxa abundance and community 
structure in Zostera marina (eelgrass) and Spartina alterniflora (cord grass) than 
in bare mud/sand and subtidal habitats.  Zostera sp. beds have been described 
as a source of habitat complexity and related factors according to Bostrom and 
Bonsdorff (1997).  This was apparently not the case with the data from Saanich 
Inlet where taxa numbers were depressed in Zostera sp. beds relative to most 
other habitat types particularly Ulva sp., Fucus sp. and other algae.  No estimate 
of eelgrass bed density is available from the Saanich sites for comparison with 
Ferraro and Cole nor are there sediment chemistry data (e.g.) %TOC).  However, 
it is conceivable that eelgrass roots may inhibit burrowing animals, particularly 
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bivalves (Burd et al 2008), or possibly there was a systemic reluctance, within the 
program, to disturb eelgrass habitat thus creating bias in the data. 
 
The goals of most Shorekeeper programs, and their appeal to regulatory 
organizations, are loosely associated with the measurement of ecosystem 
change or estimating habitat quality in support of ecosystem-based management 
(Jamieson et al. 1999).  However, the concept ‘ecosystem quality’ is elusive, 
generally being defined by human objectives because of difficulties defining 
natural multispecies reference conditions or measuring the functional role of an 
ecosystem process (Tillin et al. 2008).  Habitat quality may only make sense 
when applied to a single species where the objective is to manage a commercial 
fishery, protect a threatened species or assess the role of an individual that 
modifies habitat structure (e.g. benthic engineers - Hall et al. 1997, Naiman et al. 
2002, Ferro and Cole 2007, Macdonald et al. 2010).  A Shorekeepers’ Program 
could be aligned to track single taxa in a single appropriate habitat unit and, if the 
taxa had keystone qualities within the community (Paine 1974), it may be viewed 
as an ecosystem indicator and the program would support ecosystem-based 
management ideals.  However, the Saanich Inlet data, as analysed in this paper 
seeks to identify a reference condition with multiple taxa variables in 
multidimensional space defined by environmental gradients.  Tillin et al. (2008) 
suggest that this approach, while still useful, provides a less comprehensive 
valuation of habitat quality than a functional approach that documents, quantifies 
and manages ecosystem processes.  A Shorekeeper’s Program run by 
volunteers is not suited to meet the needs of this type of ecosystem analysis 
largely because measures of ecosystem functioning are not well developed (Tillin 
et al. 2008) and critical pathways of effects span geographical areas much too 
large for a volunteer-run program to examine.  Here then is another consideration 
when planning for volunteer engagement in programs that support prosperous 
fisheries and sustainable aquatic ecosystems within the Ocean Action Plan (DFO 
2005).  Volunteer contributions will have the greatest value if they rest within a 
program of broader ecosystem-based science.  To be vital, ecological reference 
condition data, collected by groups like the Saanich Inlet Preservation Society, 
need to be considered in unison with an understanding of, for example, inputs 
from upland watershed, adjacent coastal and oceanic circulation patterns, 
meteorological trends, and sediment chemistry.  The proximity of the DFO’s 
Institute of Ocean Science and years of science interest in Strait of Georgia 
provides context for information collected by the Saanich Inlet Preservation 
Society and other operations in the southern Strait of Georgia.  Volunteers may 
best be employed at locations where existing data and science support can 
provide these linkages to create a multidisciplinary program based on ecosystem 
principles. 
 
Perhaps the strongest argument in support of the Shorekeeper Program and its 
volunteers lies outside the realm of scientific evaluation.  By enabling citizens to 
monitor marine ecosystems, we promote and educate conservation, protection 
and restoration of coastal habitats, and their associated species, while receiving 
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feedback in local knowledge and public concerns (Cohn 2008).  Citizens and the 
communities they represent are more likely to support regulatory directives if they 
feel an ownership of both the resources and the data that contribute to their 
regulation.  Finally, citizen science is cost effective.  Silvertown (2009) suggests 
that future projects that require the collection of large volumes of data over a 
wide geographical area will only succeed with the help of volunteers.  To this 
end, this paper commends citizen scientists, while highlighting the results of their 
efforts and making recommendations that may increase fieldwork efficiency and 
improve data quality. 
 

 
RECOMMENDATIONS 

 
• Substrates at the six sites differed spatially and temporally.  Choosing 

sites with similar characteristics or a study focus on specific substrates 
and elevations would reduce natural variation and improve our ability 
to assess impacts of interest. 

• Substrate and elevation should be estimated at each quadrat location.  
With these elevation data, slope observations at each site may no 
longer be necessary.  

• Methods to consistently discriminate among ‘sand’ and ‘mud’ 
substrates should be devised and enacted at each quadrat location. 

• Substrate should be estimated independently of cover; i.e.) a new 
variable should be restricted to geological definitions and measured as 
part of the field protocol. 

• Only a small number of the total taxa variables were required to 
describe biological trends in the data.  Volunteers could be asked to 
concentrate on a suite of species chosen from preliminary sampling, 
existing literature from monitoring studies in the same geographical 
area and literature reviews of indicator species. 

• Substituting binary data for quantitative estimates (counts or percent 
cover) of taxa importance could save sampling time and provide more 
information per unit effort. 

• Three factors (substrate, site, elevation) had a significant influence on 
community structure but several additional factors if available, could 
add context to the volunteer’s observations (e.g. water temperature, 
%TOC, %TN, wind, wave and current exposures, linkages to adjacent 
land and water-use activities, etc.). 

• Quadrats should be situated in each habitat unit in a random manner 
(transects could continue to be used) to ensure independence of 
errors. 

• Sites could be sampled annually for three to five years and then less 
frequently to free up resources to examine other locations (Jamieson 
et al. 1999). 
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• A continual data validation procedure should be incorporated into the 
sampling procedure.  This may require the assignment of a 
departmental employee to accompany a Shorekeeper group for portion 
of their annual sampling. 

• A strong volunteer leader is required to motivate the others and ensure 
data consistency.  The department should support the leader and 
others with regular feedback as a reward for their efforts (Silvertown 
2009). 

 
 

OBSERVATIONS 
 

• The Shorekeeper Program could be employed to measure an 
anticipated impact but is best suited for monitoring designs that 
measure environmental trends, the distribution and progression of 
invasive species, and/or act to define a baseline reference condition 
against a future impact(s), unpredictable in space and time. 

• The program is less well designed to evaluate ecological processes or 
pathways of effects. 

• Taxa diversity estimated by simple taxa counts (not complicated 
diversity indices) provided an additional means for spatial and temporal 
comparison of habitat types and sites. 

• In terms of these 6 intertidal habitats, there is no glaring evidence of a 
decline in “ecosystem health” in the Saanich Inlet region but many 
gaps remain in our knowledge. 
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Table 1: Documentation of the characteristics of adjacent upland areas that may 

have had an influence on the biological communities found at each study 
site.  The dates of potentially influential upland events have been noted in 
the ‘Comments’ column. 
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Table 2: A biological inventory of 145 of the 207 taxa groups that were identified 

to species or taxa level from collections during a 10 year period by the 
Saanich Inlet Preservation Society at six sites in Saanich Inlet.  Invasive or 
cryptogenic species are identified (●).   Note that Mytilus sp. was identified 
by the volunteers as M. edulis but resolution to species could not be 
confirmed. 
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Table 3: Eigenvector coefficients (PC loadings) listing the biological assemblages 

(each joined with a vertical line) most responsible for the variation among 
substrates described by the principal components in Figure 6. The most 
common member of a genus that discriminates among substrates is listed 
in brackets. 
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Table 4: Eigenvector coefficients (PC loadings) listing the biological assemblages 

most responsible for the variation among sites described by the principal 
components in Figure 10.  Site comparisons are based on assemblages 
found in cobble.  Each assemblage is indicated with a vertical line. The 
most common member of a genus that discriminates among site is listed 
in brackets. 
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Table 5: Eigenvector coefficients (PC loadings) listing the biological assemblages 

most responsible for the variation among sites described by the principal 
components in Figure 12.  Site comparisons are based on assemblages 
found on bedrock.  Each assemblage is indicated with a vertical line. 
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Table 6: Eigenvector coefficients (PC loadings) listing the biological assemblages 

most responsible for the variation among sites described by the principal 
components in Figure 14.  Site comparisons are based on assemblages 
found in sand.  Each assemblage is indicated with a vertical line. The most 
common member of a genus that discriminates among site is listed in 
brackets. 
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FIGURES 
 

 

a) 

b)

Figure 1. Many Shorekeeper Programs were initiated in the late 1990’s most 
commonly at locations along the southern coast of B.C. (a).  The most active 
groups, in Boundary Bay and Saanich Inlet, have been in operation 10 years.  
Six sites in Saanich Inlet were analyzed to evaluate the efficacy of the 
Shorekeeper Program (b). 
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Figure 2. The Saanich Inlet sites were subjected to a range of oceanographic 
and meteorological conditions that are typical at many sites in the protected 
inside waters of coastal B.C. 
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Figure 3. The habitat area (m2) by cover or geological substrate category identified in a 
survey of habitat units at each of six Saanich Inlet sites between 1999 and 2008.  A 
spatial and temporal analysis of these data compared substrate characteristics among 
the six sites (Figure 4).  Observations from field books suggest that the finest substrates 
occurred at TenTen but were only occasionally classified by the volunteers as mud.  For 
the purposes of the analyses the finest substrates at all sites were classified as sand. 
 

  26



 

-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1

Algae

Moses37%

20%

Jimmy’s

Rock

Fucus

Sand

Towner

TenTen
Zostera spp.

T’seycum

Hagan
99

06

00 Ulva

Marsh
Cobble

-1.5

-1

-0.5

0

0.5

1

-2 -1.5 -1 -0.5 0 0.5 1

Algae

Moses37%

20%

Jimmy’s

Rock

Fucus

Sand

TenTen
Zostera spp.

Towner

T’seycum

Hagan
99

06

00 Ulva

Marsh
Cobble

 
Figure 4. Plots of the six sites in multidimensional space as defined by the habitat 
units at each location.  Habitat units were defined by both biological cover and 
substrate type.  The annual means are indicated with a ‘◊’ symbol and all means 
for a site were enclosed in an ellipse that was fit by eye.  The years in which 
three unusual observations were made at Moses are indicated.  The first two 
axes described nearly 60% of the variation in the substrate data. 

Site

Sl
op

e 
(d

eg
re

es
 9

5%
 c

l)

TowBayTenTenT'SeycumMosesJimmy'sHagan

5

4

3

2

1

0

Sit
Site

Sl
op

e 
(d

eg
re

es
 9

5%
 c

l)

TowBayTenTenT'SeycumMosesJimmy'sHagan

5

4

3

2

1

0

Sit

 
Figure 5. Mean slopes of individual habitat units calculated among years by site 
with 95% confidence limits.  Slopes were calculated by comparing elevations at 
the top and bottom of each habitat unit.  As such, the sample sizes at each site 
varied with the number of habitat units. 
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Figure 6. Fifty-five biological variables (taxa) plotted in space defined by the first 
two principal components to identify the biological assemblages in Table 3, that 
discriminate among benthic habitat units.  Symbols are the mean principal 
component scores (1999-2008) for each benthic category at each site, 
surrounded by an ellipse that was fit by eye.  The first three PC’s described less 
than 20% of the overall variation in the biological database.  Sites are identified 
as Hagan (H), Jimmy’s (J), Moses (M), Towner Bay (T), TenTen (tt), and 
Tseycum (S). 
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Figure 7. Regression analysis of the influence of quadrat elevation on the 
presence/absence of individuals in the biological assemblages defined by PCI 
and PCII in Figure 6.  Sites are indicated by colour - the symbols are too small to 
be identified by eye. 
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Figure 8. An interval plot depicting the discrimination among benthic habitat units 
based on the first two principal components in Figure 6 and the variation in 
biological assemblages they describe (Table 3).  Vertical bars describe two 
standard errors of the mean eigenvector coefficients among quadrats deployed 
at each site, all years. 
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Figure 9. Mean elevation estimates of quadrats in the three most common 
substrates at each site among all years.  Vertical bars are two standard errors of 
the mean.  Bedrock was not present at Tseycum.  Sand data includes a few 
occasions where the habitat was classified as mud.  Quadrat number in each 
substrate category were sand n=561, cobble n=748 and rock n=352.  Individual 
quadrat elevations were not taken during the field work but were recreated using 
GIS plots (Appendix 1) and the beach elevations at upper and lower boundaries 
of each habitat unit. 
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Figure 10. Fifty-five biological variables (taxa) plotted in space defined by the first 
two principal components to identify the biological assemblages in Table 4, that 
discriminate among cobble habitats at each site.  Symbols are the mean principal 
component scores among quadrats at each site, each year (identified by the last 
number of the year), surrounded by an ellipse that was fit by eye.  The first three 
PC’s described less than 20% of the overall variation in the biological database.   
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Figure 11. An interval plot depicting the discrimination among sites based on the 
first two principal components in Figure 10 and the variation in biological 
assemblages they describe (Table 4).  Vertical bars describe two standard errors 
of the mean eigenvector coefficients among quadrats deployed in cobble habitats 
at each site, all years. 
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Figure 12. Fifty-five biological variables (taxa) plotted in space defined by the first 
two principal components to identify the biological assemblages identified in 
Table 5 that discriminate among bedrock habitats at each site.  Excluded from 
the analysis are Tseycum and Towner Park because of the absence or rarity of 
bedrock substrate.  Symbols are the mean principal component scores among 
quadrats at each site, each year (identified by the last number of the year), 
surrounded by an ellipse that was fit by eye.  The first three PC’s described less 
than 20% of the overall variation in the biological database. 
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Figure 13. An interval plot depicting the discrimination among sites based on the 
first two principal components in Figure 12 and the variation in biological 
assemblages they describe (Table 5).  Vertical bars describe two standard errors 
of the mean eigenvector coefficients among quadrats deployed in bedrock 
habitats at each site, all years. 
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Figure 14. Fifty-five biological variables (taxa) plotted in space defined by the first 
two principal components to identify biological assemblages (Table 6) that 
discriminate among sand habitats at each site.  Symbols are the mean principal 
component scores among quadrats at each site, each year (identified by the last 
number of the year), surrounded by an ellipse that was fit by eye.  The first three 
PC’s described less than 20% of the overall variation in the biological database.   
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Figure 15. An interval plot depicting the discrimination among sites based on the 
first two principal components in Figure 14 and the variation in biological 
assemblages they describe (Table 6).  Vertical bars describe two standard errors 
of the mean eigenvector coefficients among quadrats deployed in sand habitats 
at each site, all years. 
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Figure 16. Mean taxa identified in quadrats collected at each site during the study 
(a), in comparison to the mean number of habitat units per year (b), as a 
measure of habitat heterogeneity at each site.  Vertical bars describe two 
standard errors of the mean. 
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Figure 17. Regression of habitat heterogeneity (number of habitat units) vs taxa 
diversity with Hagan data excluded from the analysis (Figure 16).  Numbers 
identify sites as indicated in the legend. 
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Figure 18. Mean taxa diversity among years in quadrats by habitat unit at the 
sites in which they were found.  Vertical bars describe two standard errors of the 
mean. 
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Figure 19. The influence of quadrat elevation on taxa diversity in all habitat units.  
Individual habitat units are described in the legend by symbol and colour.  A 
regression of elevation on taxa diversity is not significant (p>0.05). 
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APPENDIX 
 
Appendix 1: GIS plots of habitat units at each site and each year from the site 

surveys that preceded the biological collections.  Habitat codes are, Rock-
r, Cobble/Shell-c, Sand-s, Mud-u, Fucus-fa, Ulva-ua, Eelgrass-e, 
Macroalgae-oa, Marsh-m.  A single type of habitat could occur discretely 
at several locations within a site in a given year and were numbered 
sequentially with the habitat code.  Elevation estimates referenced to 
datum were taken at the boundary between habitat units and were used 
subsequently to estimate elevation of individual quadrats. 
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