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Abstract
More than 100 tidal marsh creation projects were constructed throughout the Fraser River Estuary, British Columbia, Canada 
from the 1980s to present. Past studies described and evaluated many of these projects and found varied success, but the 
underlying factors that determine project outcomes remain uncertain. Combining field sampling, spatial analysis, and statisti-
cal modeling of plant communities, we aim to address this knowledge gap by asking what factors influence the resilience of 
created marshes, as measured by (1) persistence of marsh vegetation, (2) native species dominance, and (3) species richness. 
We observed marsh recession in 40 of the 78 projects visited, representing 23,666  m2 (9.3%) of the 254,357  m2 of created 
marsh surveyed. Increases in mean site elevation had a negative effect on percent recessed area, while sites in the north 
branch of the river and sites further upriver were more prone to recession. From field observations and data interpretation 
we suggest that wake erosion and Canada Goose (Branta canadensis) herbivory may be drivers behind these losses and 
warrant further investigation. Dominance of native species declined with distance upriver, though invasive cattail (Typha 
angustifolia, T. × glauca) defied this trend, dominating outer estuary sites, particularly closed embayments, when present. 
Native and non-native richness shared similar patterns and were comparable between reference and created marshes, increas-
ing on average with elevation and distance upriver. These findings offer insight into how site design and location influence 
the outcome of marsh creation projects, and the challenges presented by stressors and environmental change in estuaries.
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Introduction

Human settlement has occurred in estuaries for millennia, 
as they are abundant in natural resources and are in close 
proximity to the ocean (Small and Nichols 2003; Day et al. 
2012). The result, particularly in recent centuries as human 
populations have exponentially increased, has been the esca-
lated alteration, fragmentation, and loss of estuarine habitats 
around the world. These losses have led to declines in the 

function, services, and resilience of these ecosystems in an 
age when threats such as climate change and species inva-
sions abound (Barbier et al. 2011; O’Meara et al. 2017). 
To this day, habitat loss remains one of the major threats to 
global estuaries (Kennish 2002).

Estuaries along the west coast of North America have 
not been immune to habitat loss. An estimated 85% of tidal 
wetlands have disappeared in estuaries along the contigu-
ous U.S. Pacific Coast since European settlement, with the 
greatest losses occurring in major river deltas (Brophy et al. 
2019). The Fraser River Estuary (FRE), the largest estuary 
on Canada’s Pacific Coast, has seen similar declines. An 
estimated 70 – 90% of wetlands have been lost due to exten-
sive diking and development (Kistritz and Scott 1992; Boyle 
1997), and the FRE now contains the largest port and third 
largest metropolitan area in Canada. These losses are detri-
mental to the many species that depend on estuarine habi-
tats, including declining North American Pacific salmon, 
particularly Chinook (Oncorhynchus tshawytscha) and 
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chum (O. keta; Levy and Northcote 1982; Chalifour et al. 
2019), and numerous species at risk (Kehoe et al. 2021). The 
north–south network of estuaries along the Pacific Coast also 
provides critical stopover points for migratory bird species 
travelling along the Pacific Flyway, and productive forag-
ing, resting, and roosting habitat for migratory and resident 
waterfowl, shorebirds, songbirds, raptors, and gulls (Butler 
and Campbell 1987).

As understanding of the impacts of human activities in 
the estuaries have increased, so too have efforts to mitigate 
them. In the FRE, an abundance of research was conducted 
in the late 1970s and early 1980s to better understand the 
ecology of local tidal marshes (e.g., Levy and Northcote 
1982), and to research and test tidal marsh creation as a 
means of mitigating habitat loss (Adams and Williams 
2004). Building upon this knowledge, the Department of 
Fisheries and Oceans Canada (DFO) introduced the Policy 
for the Management of Fish Habitat (1986), which included 
“no net loss” guidelines aimed to maintain the productive 
capacity of fish habitats in Canada by using habitat replace-
ment, primarily compensation, to balance unavoidable fish 
habitat losses. Though fisheries policies have been updated 
since 1986, marsh habitat creation remains a common prac-
tice for mitigating habitat loss, and has resulted in over 100 
compensation and offsetting projects throughout the FRE, 
representing nearly all marshes constructed to date.

A small number of studies have documented and evalu-
ated marsh creation projects in the FRE, and have reported 
varied outcomes. Kistritz et al. (1992) documented the deg-
radation of some projects by erosion and debris, likely due 
to ineffective shear booms or erosion protection. Based on 
area, Kistritz (1995) calculated a net gain of marsh habitat 
in the FRE from 1983 – 1992 due to compensation activi-
ties, but recommended follow-up remediation at multiple 
projects. A rigorous research program conducted in the 
early 1990s evaluated the ecological functioning of cre-
ated marshes (see Levings and Nishimura 1996). Through 
this program it was found that the average percent cover 
of Lyngbye’s sedge (Carex lyngbyei Hornem.), the target 
plant species of nearly all projects due to its high productiv-
ity, detrital value (Kistritz et al. 1983) and dominance in 
mid-elevation brackish marshes throughout the northwest 
coast of North America, was lower in created marshes than 
adjacent reference marshes (Moody 1993; Stronach 1995). 
Benthic invertebrate abundance was also equal or higher in 
created and reference marshes than disrupted, unvegetated 
sites (Stronach 1995). No differences were found in Chinook 
salmon and chum salmon abundance between created, refer-
ence, and unvegetated sites, however the results should be 
interpreted with caution due to the small number of sample 
sites and replicates (Scott and Susanto 1993). In more recent 
years, Adams and Williams (2004) provided an extensive 
summary of marsh creation projects prior to 1997, and 

noted that early projects were more prone to failure due to 
inappropriate species selection and poor quality assurance 
during implementation. Lievesley et al. (2016) evaluated 54 
projects and highlighted the challenges of marsh creation 
in the estuary, as 65% of projects achieved their intended 
marsh area, 50% had comparable or higher dominance of 
native plants than nearby reference sites, and 33% achieved 
both criteria. Despite the relatively high success rate, it is 
not enough to support the goal of achieving net zero habitat 
loss through marsh creation.

Vegetative cover is a commonly used metric to evaluate 
created tidal marshes (Kentula 2000; Broome et al. 2019). 
Functioning tidal marshes support high net primary produc-
tion, which contributes to the accumulation of soil organic 
matter. This organic surface soil is an integral part of the 
detritus-based food web of estuaries. Due to this, and the 
refuge offered by standing biomass, vegetative cover has 
historically been used as a proxy for high-quality fish habitat 
in the region (Bradford et al. 2017). In addition to providing 
food and refuge for numerous other species, tidal marshes 
support a multitude of ecosystem services, including soil 
stabilisation, water quality maintenance, wave attenua-
tion, carbon sequestration, sediment accretion, and nutri-
ent cycling (e.g., Peterson et al. 2008; Mudd et al. 2010; 
Broome et al. 2019; Arias-Ortiz et al. 2021; Correa et al. 
2021). Conversely, marsh recession occurs when vegetation 
cover declines, resulting in an unvegetated tidal mudflat 
or sandflat. This phenomenon has been observed in both 
natural and created marshes of the FRE, including at least 
160 ha of natural marsh that disappeared from the foreshore 
of one deltaic island between 1989 and 2011 (Balke 2017; 
Marijnissen 2017), and in several degraded marsh creation 
projects described by Lievesley et al. (2016).

The abundance of native species is also a metric fre-
quently used to monitor and assess projects, as dominant 
non-native or invasive species can alter the function and 
services of an ecosystem (Zedler and Kercher 2004; Jes-
sop et al. 2015; Alldred and Baines 2016). For example, 
decomposition rates of invasive purple loosestrife (Lythrum 
salicaria L.), which likely established in the FRE in the mid-
twentieth century, are significantly faster than sympatric 
native C. lyngbyei, potentially altering the timing of detritus 
supply and prey availability for juvenile salmon (Grout et al. 
1997). Non-native cattail, especially hybrid Typha × glauca 
Godron has established in more recent decades, and now 
occupies an estimated 4% or 50 ha of tidal marsh habitats in 
the FRE, forming near-monocultures where present (Stewart 
et al. 2023). These invaded areas are less floristically diverse, 
contain fewer chironomids, and fewer benthic invertebrates 
than nearby sedge meadows, representing a major threat to 
biodiversity and food web interactions (Lee 2021; Stewart 
2021). In general, the effects of non-native plant invasions 
are understudied in many wetland ecosystems, including the 
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FRE. In the absence of realised or quantified effects, manag-
ers often justify the preservation of native species through 
a precautionary lens, based on the potential negative effects 
of invasion (Blossey et al. 2001).

Plant species richness may offer insight into the resilience 
of tidal marsh ecosystems when faced with environmental 
change. Biodiversity can stabilize the functioning of ecosys-
tems through insurance mechanisms, such as asynchronous 
responses to environmental fluctuations, variable response 
speeds to disturbance, reduced strength of competition, and 
complementarity. These mechanisms can insure that bio-
mass production, productivity, nutrient retention, and other 
ecosystem functions are maintained or enhanced in the wake 
of environmental stress, disturbance, and change (Yachi and 
Loreau 1999; Engelhardt and Ritchie 2002; Bruno et al. 
2003; Loreau and de Mazancourt 2013).

The objective of this study was to advance our under-
standing of marsh habitat creation and management by 
learning from the successes and failures of over 40 years of 
projects in the FRE. This is motivated by a recent surge of 
interest among rightsholders and stakeholders in the estuary 
to build new habitats and enhance past projects. To achieve 
this, we used a combination of field sampling, spatial analy-
sis, and modeling of plant communities to investigate key 

factors that contribute to the outcome of tidal marsh crea-
tion projects. Specifically, we asked (1) which factors are 
associated with marsh recession in created tidal marshes? 
(2) which factors influence the dominance of native spe-
cies in created and natural marshes? and (3) which factors 
influence plant community diversity in created and natural 
tidal marshes?

Methods

Field Sites

This study includes data from 78 marsh creation pro-
jects constructed between 1982 – 2015, and 16 reference 
marshes located in the FRE, southwest British Columbia 
(Fig. 1). All study sites are tidally influenced, with a mixed 
semidiurnal tidal cycle and tidal ranges varying from 3 m 
– 5 m. Among these are 51 projects and 7 reference sites 
surveyed in 2015 by Lievesley et al. (2016), in addition to 
27 projects and 9 reference sites surveyed between June 
– August 2021. Apart from 12 embayments (enclosed 
marshes connected to the river via channels – see exam-
ples in Online Resource 1), all marsh creation sites were 

Fig. 1  Map of assessed tidal marsh creation projects and reference marshes in the Fraser River Estuary (2021: n = 36; 2015: n = 58; total n = 94). 
Symbol shapes and colours differentiate sites that were sampled in 2015 and 2021
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located along the riverward side of a rip rap dike. Created 
marshes included in this study are adjacent to industrial 
areas (50%), residential areas (18%), developed parks 
(17%), natural upland (9%), natural wetland (3%), agricul-
ture (3%), and commercial areas (1%). Wetland reference 
sites may vary in selection criteria depending on study 
objectives (Kentula 2000). For the purposes of this study, 
we define reference sites as natural tidal marshes that, to 
our knowledge, were not created or significantly disrupted 
by human activity based on available satellite imagery and 
orthophotos dating to the 1950s (see detailed reference site 
descriptions in Online Resource 2). Reference sites were 
adjacent to natural uplands (40%), industrial areas (33%), 
agriculture (13%), natural wetlands (7%), and developed 
parks (7%). Apart from a small number of sites owned 
by the federal government (2), local municipalities (9), 
and private landowners (7), all study sites were located on 
Provincial Crown land (i.e., land owned by the provincial 
government but accessible to the public).

Created tidal marshes were located using a combina-
tion of desk- and field-based reconnaissance, correlating 
project descriptions and historical photographs provided 
in the Fraser River Estuary Management Program Atlas 
(CMN 2021) with field observations and 10 cm georefer-
enced aerial imagery. The location of randomized sample 
plots (1 × 1 m quadrats) were generated prior to site visits 
using the University of New Hampshire KML Tool Pro-
ject for 2015 points (KML Tools Project 2023) and QGIS 
for 2021 points (v3.20, QGIS 2021) with spacing ranging 
from 2 m – 88 m. We targeted an optimum minimum sample 
size of 20 plots per site (James-Pirri et al. 2007), though 
occasionally fewer were sampled due to small marsh size or 
tidal constraints, and more were sampled in larger, hetero-
geneous sites (with spacing ≥ 2 m between plots). Quadrats 
were oriented perpendicular to the nearest major channel, 
typically the Fraser River. Surveyors recorded the aerial per-
cent cover of all living macrophytes originating from within 
the quadrat, as well as exposed substrates (i.e., litter, mud, 
rock, wood debris). We focussed on macrophyte cover and 
invasive species abundance to align with metrics used by 
regulators, though other metrics, such as microbial com-
munities (Santini et al. 2019), could be beneficial to add to 
monitoring data in the future. An overlapping percent cover 
method was employed to account for vegetative layering, 
frequently resulting in a total percent cover of > 100%. Each 
species was then classified into one of three origin classes: 
native, introduced, and unknown (see Online Resource 3 
for a list of all species observed, and their respective origin 
classes). Plant identification and nomenclature was based on 
Hitchcock et al. (2018) and nativity was based on the B.C. 
Conservation Data Centre. On rare occasions plants were 
classified as unknown if no traits were present to differenti-
ate between native and non-native species, and included the 

genera Lycopus, Alisma, Persicaria, Cardamine, and various 
immature grasses.

In addition to vegetation sampling, we mapped the 
boundary of each site using a combination of handheld GPS 
units (Garmin GPSMap® 64 s) and Apple iPad mini (5th 
generation) with Avenza Maps mapping software (v3.14.1; 
Avenza Systems Inc. 2021). Vegetated areas and unvegetated 
substrates > 5  m2 were mapped using the same approach, and 
the presence of other site features were noted, such as shear 
booms, docks, and other offshore structures.

Spatial Data

Spatial analyses were used to describe the condition and 
environmental context of plots and sites. Project area was 
calculated using site polygons that were mapped in the field, 
and was defined as the created marsh boundary of a project. 
Where available, original project descriptions, design sche-
matics, historical imagery, and historical photographs were 
also used to optimize marsh boundary accuracy. We calcu-
lated the percent of recessed marsh in each project by divid-
ing the area of recessed marsh, also mapped in the field, by 
the total project area. For the purposes of this study, recessed 
marsh was defined as areas > 5  m2 within tidal marsh crea-
tion projects that were designed for emergent macrophytes 
(e.g., Carex spp., Juncus spp.) but contained less than an 
estimated 5% cover in 2015 or 2021 surveys (see Online 
Resource 4 for visual examples). When present, vegetation 
in recessed areas was sporadic and primarily restricted to a 
small number of low-lying mudflat specialists < 10 cm in 
height (e.g., Callitriche stagnalis Scop., Eleocharis parvula 
Roem. & Schult., Limosella aquatica L.).

Using the Measurement Tool in QGIS, we quantified the 
percentage of edge habitat for each site by calculating the 
area of marsh located within 5 m of the river channel, which 
we then divided by the total project area. For each sample 
plot, proximity to the river channel was calculated in QGIS 
using the GRASS Toolbox (v7.8.6; GRASS Development 
Team 2012). Each site and plot were assigned a distance 
upriver, which was calculated as the channel-distance to 
a standardized line across the river mouth. In cases where 
multiple pathways to the river mouth were possible, dis-
tances were based on those of the largest, and therefore most 
influential, channel.

Elevation data were acquired from a digital elevation 
model (DEM) derived from a 2016 Province of British 
Columbia dataset (vertical accuracy ± 15 cm RMSE, hori-
zontal accuracy ± 65 cm RMSE). Other studies have shown 
that LiDAR can overestimate marsh elevation, particularly 
when acquired during the growing season, depending on the 
height and density of vegetation (Hood 2007; Hladik et al. 
2013). To investigate potential biases in LiDAR error we 
compared the discrepancies between survey-grade real-time 
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kinematic (RTK)- and DEM-derived elevation at 211 points 
to test the effects of various dominant species on DEM error 
(Online Resource 5). We found that low-lying and sparsely-
arranged species had little effect on DEM accuracy, while 
LiDAR overestimated ground elevation in areas dominated 
by tall, dense species by approximately 20 cm. To mitigate 
this error, we determined the mean site elevation by calcu-
lating the DEM-derived elevation of unvegetated areas and 
vegetated areas separately. Elevation data from unvegetated 
areas remained uncorrected, while vegetated areas were low-
ered by 20 cm, unless they were dominated by sparse or low 
emergent species, in which case they remained uncorrected. 
Based on area, a weighted mean site elevation was then 
calculated. For plot data, elevation was also corrected by 
looking at the dominant cover type of each plot. Plots were 
lowered by 20 cm if they contained > 40% cover of tall emer-
gent species, while all other plots remained uncorrected. In 
some cases, plots or sites were dominated by a species not 
included in our error analysis. When this occurred, we used 
the correction factor of similar species as a proxy, based on 
morphological traits such as height and density.

Statistical Analysis

Marsh Recession Model

We used a zero-inflated beta regression model in R to esti-
mate the effects of factors on recession in created marshes 
(‘gamlss’ package in R v4.0.5; R Core Team 2020, Rigby 
and Stasinopoulos 2005). Only created marshes were 
included in this model, as the complexity of measuring 
recession in reference marshes, which lack the clear bounda-
ries of created sites, was beyond the scope of this study. We 
modelled the proportion of recessed marsh as a function of 
project age (years), project size  (m2), distance upriver (km), 
percent edge habitat, mean project elevation (metres), river 
arm (Main or North) and the presence of offshore erosion 
protection (shear boom, log storage boom, or dock structure, 
see Online Resource 6 for more details). We also included 
an interaction between distance upriver and mean project 
elevation, as we predicted that elevational effects would be 
dependent on proximity to the marine environment, which 
influences both tidal range and salinity. We scaled numeric 
variables to a mean of 0 and a standard deviation of 1 before 
model fitting.

Dominance & Richness Models

To investigate factors influencing the dominance of native 
species and species richness in FRE marshes we used gen-
eralized linear mixed-effects models (‘lme4’ package in R; 
Bates et al. 2015). Unlike the site-based data of the marsh 
recession model, we used sample plot data from both created 

and reference marshes for this analysis. Dependent variables 
entailed relative cover of native species (defined as the cover 
of native species as a percentage of the total plant cover in 
a plot) for the native dominance model, native species rich-
ness per plot and non-native species richness per plot for 
the richness models. Independent variables for these models 
were selected based on data availability and their impact on 
plant species distributions in estuaries, as suggested in the 
literature. These included distance upriver (a proxy for envi-
ronmental stressors including salinity and inundation), ele-
vation, and distance to the nearest channel (Sanderson et al. 
2000; Crain et al. 2004; Engels and Jensen 2009; Watson and 
Byrne 2009). We also tested for differences between created 
and natural marshes. Other categorical variables included 
river arm, closed embayments, and sample year, which was 
added to account for sampling differences between record-
ing teams and differences in growing conditions between 
years. Sites were included as random effects to account for 
site-to-site variation. An interaction term between plot dis-
tance upriver and plot elevation was included, with the same 
rationale as our marsh recession model. Fit for the native 
dominance and richness models were evaluated using mar-
ginal and conditional R2 values (Nakagawa et al. 2017) using 
the ‘MuMIn’ package in R (Bartoń 2020).

Results

Marsh Recession

We sampled 78 created tidal marshes that varied in 
size from 20 – 59,309  m2 and were generally small 
(mean = 3261 ± 859.9  m2, median = 1115.7  m2). Recessed 
marsh ranged from 0 – 100% across the 78 created tidal 
marshes, averaging 13.6% (SD = 21.7%). This equates to 
approximately 23,666  m2 or 9.3% of the 254,357  m2 of 
created tidal marsh sampled. Two sites (3%) were fully 
recessed, and 40 (51%) contained recessed areas. Sites var-
ied considerably in their numeric variable ranges: distance 
upriver (0.4 – 46.9 km), age (7 – 40 years), size (20 – 59,309 
 m2), mean elevation (-0.04 – 1.84 m) and proportion of edge 
habitat (0.0 – 100%). There were 29 sites (37%) with off-
shore erosion control present, and 35 sites (45%) were in 
the North Arm versus the Main Arm (Online Resource 7).

Sites further upriver were more likely to have marsh reces-
sion (βν = -1.43 ± 0.45, t = -3.17, p = 0.002; βμ = 0.70 ± 0.24, 
t = 2.97, p = 0.004). The model-predicted proportion of 
marsh recession increased from 0.20 at 0.44 km upriver 
to 0.89 at 46.7 km upriver (Fig.  2a). Sites with higher 
mean elevations were less likely to have marsh recession 
(βν = 1.30 ± 0.39, t = 3.36, p = 0.001; βμ = -0.32 ± 0.21, 
t = -1.56, p = 0.12; Fig. 2b). The model-predicted propor-
tion of marsh recession decreased from 0.66 at an elevation 
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of 0 m to 0.18 at an elevation of 1.84 m (Fig. 2b). Sites in the 
North Arm of the channel had higher proportions of recessed 
marsh than the Main Arm (βν = 1.41 ± 0.69, t = -2.03, 
p = 0.05; βμ = 0.97 ± 0.38, t = 2.57, p = 0.01; Fig. 2c). Pro-
ject age (Fig. 2d), size, percent of edge habitat, or erosion 
protection did not affect the proportion of recessed marsh 
(Online Resource 8).

Native Species Dominance

A total of 1,716 sample plots were included in the native 
species dominance model, with 1,244 originating from 78 
created marshes (72%). Of these 1,244 plots, 850 were sam-
pled at 51 sites in 2015, and 394 were sampled at 28 sites 
in 2021. The remaining 472 plots (28%) originated from 16 
reference marshes, with 292 sampled in 2015 and 180 sam-
pled in 2021. Numeric plot data encompassed a wide range 
of marsh conditions: channel proximity (0 – 201 m), distance 
upriver (0.4 – 46.9 km), and elevation (-0.77 – 2.25 m). 
Among categorical variables, 651 (38%) of plots were in the 

North Arm versus Main Arm, and 273 (16%) were in closed 
embayments versus exposed sites (Online Resource 9).

Dominance of native species ranged from 0 – 100% in 
the sample plots, averaging 61.7% (SD = 35.9%). Plots 
located further upriver were less likely to be dominated by 
native species (β = -0.44 ± 0.16, z = -2.82, p = 0.01; marginal 
R2 = 0.07, conditional R2 = 0.33, Fig. 3a; Online Resource 
10). Native species dominance did not differ between 
plots located in closed embayments versus exposed sites 
(β = -0.73 ± 0.42, z = -1.74, p = 0.08; Fig. 3b). Elevation, 
river arm, reference site, sample year, and channel proxim-
ity did not affect native dominance per plot. Notably, native 
species dominance per plot also did not differ significantly 
between reference marshes (65.8%, SD = 35.9%) versus cre-
ated marshes (60.2%, SD = 35.8%; Fig. 3c).

Native Species Richness

Native richness ranged from 0 – 13 species/plot, averag-
ing 3.7 (SD = 2.4) across all plots. A total of 107 native 
plant species were observed in plots (Online Resource 3). 

Fig. 2  Plots visualizing the distribution of distance upriver (a), eleva-
tion (b), and river arm (c), and project age (d) in relation to marsh 
recession (proportion). Scatterplot lines visualize the model predic-

tions for each variable while all other model variables are held fixed 
at the mean value of samples. Violin plot means are displayed with 
black dots, with error bars visualising standard error

Fig. 3  Plots visualizing the relationship between distance upriver (a), 
closed embayment designs (b), and reference marshes (c) on native 
dominance. Scatterplot line displays the model predictions for the 
variable while other model variables are held fixed. Violin plot mean 

values are shown by black dots, with accompanying lines displaying 
standard errors. ‘Yes’ and ‘No’ violin plot values (b) indicate whether 
a plot occurred inside a closed embayment or exposed marsh
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A significant interaction was observed between elevation 
and distance upriver, suggesting that the effects of eleva-
tion on native richness/plot is dependent on proximity to 
the river mouth (β = -0.42 ± 0.20, z = -2.11, p = 0.03, delta 
marginal R2 = 0.17, conditional R2 = 0.42). Plots that were 
further upriver (β = 0.12 ± 0.04, z = 2.73, p = 0.006, Fig. 4a) 
and higher in elevation (β = 0.89 ± 0.19, z = 4.75, p < 0.001, 
Fig. 4b), and were more likely to have higher native rich-
ness/plot. Conversely plots located in closed embayments 
(β = -0.56 ± 0.12, z = -4.48, p < 0.001, Fig. 4c) and those 
sampled in 2021 (β = -0.28 ± 0.85, z = -3.30, p = 0.001) had 
fewer native species/plot. There were no differences in spe-
cies richness between plots in reference and created marshes 
(Fig. 4d), nor between the North Arm and Main Arm (Online 
Resource 11). There was no unequivocal evidence that the 
distance from a channel affected native species richness 
(β = 0.05 ± 0.03, z = 1.71, p = 0.09).

Non‑native Species Richness

Non-native species richness ranged from 0 – 12 species/
plot, averaging 2.5 (SD = 1.9) across all plots. A total of 
74 non-native plant species were observed in plots (Online 
Resource 3). As with native richness, there was a signifi-
cant interaction between elevation and distance upriver, 
indicating the effects of elevation on non-native species 

richness/plot is dependent on proximity to the river mouth 
(β = -0.15 ± 0.02, z = -6.22, p < 0.001, delta marginal 
 R2 = 0.27, conditional  R2 = 0.56). Plots that were further 
upriver (βν = 0.40 ± 0.06, z = 6.60, p < 0.001; Fig. 4e), higher 
in elevation (β = 0.22 ± 0.02, z = 9.54, p < 0.001, Fig. 4f), 
and further from the nearest major channel (β = 0.07 ± 0.03, 
z = 2.38, p = 0.02) were likely to have more non-native spe-
cies/plot, while plots sampled in 2021 were less likely to 
have fewer non-native species (β = -0.31 ± 0.12, z = -2.59, 
p = 0.01). There were no differences in the number of non-
native plant species between plots located inside versus 
outside closed embayments (Fig. 4g), in reference versus 
created marshes (Fig. 4h), nor between the North and Main 
Arms (Online Resource 12).

Discussion

Marsh Recession

We found that marsh recession is frequent in created marshes 
of the FRE, occurring in 40 (51%) of the 78 projects included 
in this study, representing an estimated 23,666  m2 of cre-
ated marsh lost. Our results suggest several contributing and 
interacting factors are likely involved, as found by others 
(Balke 2017; Marijnissen 2017). Possible factors include 

Fig. 4  Plots visualizing the relationship between distance upriver, 
elevation, closed embayments, and reference sites on native richness 
(top row) and non-native richness (bottom row). Coloured scatter-
plot lines display the model predictions for the variable while other 
model variables are held fixed at the lower (Q1), mid (Q2), and upper 
(Q3) percentile values of an interacting effect, which includes eleva-

tion (plots a, e) and distance upriver (plots b, f). Violin plot mean 
values are shown by black dots, with accompanying lines displaying 
standard errors. Violin plot ‘Yes’ and ‘No’ values indicate whether a 
plot occurred inside a closed embayment or exposed marsh (e, g) and 
inside a reference site or natural marsh (d, h) respectively
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erosion from vessel wakes and river currents (Houser 2010; 
Bilkovic et al. 2019; El Safty and Marsooli 2020), nutrient 
enrichment (Deegan et al. 2012), sediment deficiency (Wil-
liams and Hamilton 1995; Atkins et al. 2016), poor project 
design and implementation (Kistritz 1995; Adams and Wil-
liams 2004), Canada Goose (Branta canadensis) herbivory 
(Dawe et al. 2000; Lievesley et al. 2016; Janus 2022), and 
relative sea-level rise (rSLR; Kirwan and Murray 2008; Rus-
sell et al 2023). This study found that marsh recession was 
more likely in North Arm versus Main Arm sites, which 
points towards vessel wakes and herbivory as possible driv-
ers behind these losses. Wake energy is influenced by fac-
tors that vary within the estuary, such as channel morphol-
ogy (depth and width), vessel characteristics (frequency, 
length, depth), and vessel speed, which to our knowledge is 
not regulated (Glamore 2008; Bilkovic et al 2019; El Safty 
and Marsooli 2020). Based on these factors, the North Arm 
appears to be more vulnerable to wake erosion for two rea-
sons. First, our field observations suggest that boat activity 
and wake frequency is higher in the North Arm than the 
Main Arm. North Arm vessels are primarily recreational 
boats and tugs, the latter of which are more abundant in the 
North Arm due to extensive log booming tenures, and can 
produce wave heights that are well-beyond the threshold for 
shoreline sediment erosion (see Coops et al. 1996; Bilkovic 
et al. 2017). Second, the North Arm is substantially narrower 
than the Main Arm, limiting the ability of wake energy to 
dissipate before it reaches the shore (Bilkovic et al. 2019). In 
addition to wake erosion, the positive relationship between 
marsh recession, North Arm sites, and distance upriver may 
point towards Canada Goose herbivory as a driver behind 
marsh loss. Canada Geese were historically a migratory spe-
cies in the FRE, and an infrequent winter visitor. However 
in the late 1960s and early 1970s several new resident geno-
types were introduced, interbred, and have rapidly grown 
in number (Smith 2000). Janus (2022) detected over 4,000 
Canada Geese in our study area in July 2022, and found that 
goose abundance and grazing impacts were more concen-
trated in the North Arm and upriver portions of the Main 
Arm, aligning with our marsh recession model predictions. 
Marsh habitat is less abundant in the North Arm and upriver 
reaches, possibly leading to the overexploitation of plant 
communities due to a lack of neighbouring habitat to dis-
sipate grazing impacts (Kondoh 2003).

Our model predicted that created marshes with higher 
mean elevations were less likely to have marsh recession 
than lower elevation sites. To a degree, this may reflect the 
environmental limits of tidal marsh species, as emergent 
plants cease to grow at certain elevation thresholds (Cronk 
and Fennessy 2001). However, low elevation tidal marshes 
may also represent a “canary in a coal mine” for larger 
environmental issues, as these plant communities are at the 
front line of environmental change, stress, and disturbance. 

Low marsh plant species depend on specialized tissues and 
structures to survive the environmental stresses of prolonged 
inundation, elevated salinity, and anoxic conditions. Distur-
bances that inhibit these adaptations could result in low-
ered plant fitness or marsh dieback, reducing the resilience 
of these ecosystems to further degradation (Baldwin and 
Mendelssohn 1998; van Belzen et al. 2017; Rolando et al. 
2023). For example, grazing could limit the effectiveness of 
aerenchyma (air pockets within the plant) to transport gases 
between the atmosphere and roots, resulting in anoxic stress 
or mortality (Barclay and Crawford 1982). Photosynthetic 
losses from grazing can result in lower belowground car-
bohydrate storage, which enables plants to survive anoxia 
(Barclay and Crawford 1982; Albrecht and Biemelt 1998). 
Belowground plant biomass may also decline in response 
to eutrophication, a common issue in coastal ecosystems 
worldwide (Deegan et al. 2012). These losses in above and 
belowground biomass could have biophysical ramifications, 
by amplifying erosional losses and reducing the potential for 
sediment accretion, thus limiting the ability of these habitats 
to resist erosion and self-adjust to rising sea levels, which 
are estimated to regionally increase by 1 m by the year 2100 
(Coops et al. 1996; Morris et al. 2002; Bornhold et al. 2008; 
Gedan et al. 2011; Mitchell and Bilkovic 2019).

Unexpectedly, we found that project size and proportion 
of edge habitat did not have a significant effect on marsh 
recession. This fails to support the prevailing view that big-
ger projects are more resilient than smaller projects (Yan 
et al. 2021), but does not discount their value. Larger tidal 
marsh creation projects are typically more cost-effective, 
support more natural processes, are more heterogenous, 
and likely support more species as a result (Larkin et al. 
2008; Varty and Zedler 2008; Diefenderfer et al. 2018; Hood 
2020); therefore, larger created marshes are more likely to 
maintain ecosystem functioning than smaller projects in the 
presence of marsh recession.

Species Dominance

We found that dominance of native species declined with 
distance upriver, a trend that aligns with our frequency data 
for invasive plants (Online Resource 13). The high invasion 
resilience of marshes near the delta front can likely be attrib-
uted to elevated salinity and tidal stress (Engels and Jensen 
2009; Borde et al. 2020), which excludes most non-native 
species and facilitates the dominance of a small number of 
native halophytes, such as three-square bulrush (Schoeno-
plectus pungens Vahl) and Lyngbye’s sedge (Cronk and Fen-
nessy 2001; Crain et al. 2004). A larger pool of non-native 
species can establish as salinity and inundation stress dimin-
ishes, as evidenced by the positive relationship between non-
native richness with distance upriver and elevation. Ongo-
ing anthropogenic and natural riverine disturbances (e.g., 
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anthropogenic log debris, eutrophication) also continue to 
facilitate the colonization of uninvaded areas (Zedler and 
Kercher 2004).

Invasive species that can defy common estuary-wide 
patterns and successfully establish in the delta front should 
be of particular concern to managers, as they may be able 
to exploit the low competitive ability of sympatric natives 
(Crain et al. 2004). These species are currently English 
cordgrass (Spartina anglica C.E. Hubb.) a highly-invasive 
species that has undergone significant management upon 
its detection in 2003 (Williams et al. 2004) and was not 
detected in this study, and narrow-leaved and hybrid cat-
tail (T. angustifolia L, T. × glauca), which currently occupy 
approximately 50 ha of tidal marsh in the FRE, the majority 
of which is concentrated in the lower 10 km of the estuary 
(Stewart et al. 2023; Online Resource 13). Invasive cattail 
was fairly localized in our study sites, occurring in only 
17 (22%) of created tidal marsh sites, while other invasive 
species such as yellow flag iris (Iris pseudacorus L.), reed 
canarygrass (Phalaris arundinacea L.), and purple looses-
trife were found in 48 (62%), 65 (83%) sites and 73 (94%), 
respectively. Though most were located close to the delta 
front, many cattail-invaded sites defied estuary–wide pat-
terns and had low native dominance. This may be attrib-
uted to the high displacement ability of cattail (Wilcox et al. 
2008; Stewart 2021), and the comparatively low competitive 
ability of sympatric species, as evidenced by the averaged 
relative percent cover of 68.8 (SD = 37.2%) for cattail when 
present, higher than any other invasive species in this study 
(Online Resource 13).

The observed positive correlation between non-native 
dominance and richness with distance upriver may be useful 
for managers and practitioners as they plan for invasive spe-
cies in the design and maintenance of created tidal marshes. 
Sites constructed further upriver may require a multi-faceted 
approach to monitoring, managing, and mitigating inva-
sives, as they appear more vulnerable to a wider pool of 
non-native species. Near the estuary mouth, managers may 
need to direct their attention towards cattail. Site designs 
across the estuary could be adapted to face these unique 
threats. For example, practitioners in the Lower Columbia 
River Estuary have mitigated the threat of P. arundinacea 
by targeting elevations that are either too low to support it 
but can still support emergent vegetation, or are high enough 
that woody plants can grow and compete with it (Sinks et al. 
2021). Similarly, the low elevation range of C. lyngbyei has 
been targeted by practitioners at some projects in the FRE 
as a means of mitigating L. salicaria, which is typically 
most abundant in mid to high elevation C. lyngbyei marshes 
(Adams and Williams 2004). Stewart et al. (2023) found that 
created tidal marshes in the FRE were disproportionately 
more invaded and vulnerable to cattail invasions than natural 
marshes, and suggested that design, including factors such as 

elevation, proximity to neighbouring infestations, and con-
nectivity to the river, can influence their vulnerability. Our 
findings support the role of design in invasability, as of the 
17 created marshes where cattail was present, 9 (60%) are 
closed embayments, representing 75% of all such sites in 
this study. Embayed marshes occur in isolated basins that are 
connected to adjacent river channels via a small number of 
engineered outlets (Online Resource 1). Poor soil drainage 
and flushing results (Mossman et al. 2012), which favours 
cattail establishment by increasing saturation stress (Farrer 
and Goldberg 2009), nutrient availability (Woo and Zedler 
2002), and the accumulation of leaf litter (Vaccaro et al. 
2009; Stewart 2021).

Project Trajectories

Contrary to our expectations, project age did not have a 
significant effect on the proportion of recession, nor the 
dominance of native species in created marshes. This sug-
gests that (1) modern projects are not guaranteed to have 
positive outcomes, as they remain exposed to unaddressed 
systemic stressors (see 4.1) and (2) project designs, loca-
tion, and maintenance activities that mitigate stressors are 
more important than age in predicting whether created tidal 
marshes are resilient over time. We and others (Kistritz 
1995) have observed evidence of this in the FRE, where 
several projects of varying ages failed to support marsh veg-
etation upon project completion or were degraded soon after, 
and have remained in mudflat alternative stable states ever 
since. Similar observations have been made in other coastal 
systems, for example Rolando et al. (2023) noted that many 
salt marshes in their study did not naturally recover after 
dieback events, while supplemental planting was highly suc-
cessful at restoring and improving the resilience of degraded 
areas, without any environmental amendments. Handa and 
Jefferies (2000) similarly found that marshes damaged by 
grazing were unlikely to recover without assisted plant-
ing due to secondary feedbacks in the soil environment. If 
project success or failure is predictable soon after comple-
tion, this could potentially validate the ≤ 5 year monitoring 
period prescribed to most projects in the region historically 
(Harper and Quigley 2005). We advise caution in this inter-
pretation. Environmental changes and disturbances are pre-
dicted to increase in frequency and intensity with climate 
change, with possible adverse and unpredicted effects on 
created marsh health (Alber et al. 2008; Stagg et al. 2021; 
Rolando et al. 2023). Long-term monitoring and adaptive 
management may be critical tools for ensuring the function-
ing and resilience of projects in perpetuity (Levings 2000). 
For example, debris supply can temporarily increase during 
extreme flood events, accumulate on marsh platforms dur-
ing high tide or river flows, and smother marsh vegetation 
if it remains in situ. By our estimation wood debris now 
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smothers approximately 2,650  m2 or 1% of created marsh 
area in the FRE and is a widespread regional issue (Hood 
2022). Protective shear booms and debris fences were con-
structed in some projects to mitigate wood debris, however 
no long-term monitoring, maintenance, or remedial clauses 
were required by regulators (Kistritz 1995; Levings 2000; 
Adams and Williams 2004). As a result, many of these struc-
tures are non-functional or altogether absent due to aging 
materials, and the sites remain vulnerable to and degraded 
by debris (Lievesley et al. 2016). In some instances new 
and unpredicted stressors may arise, such as Canada Geese, 
whose regional impact and population size have increased 
in recent decades (Dawe et al. 2000; Janus 2022). Sites that 
were unimpacted or resilient to herbivory at the time of their 
construction may undergo degradation in current conditions, 
thus requiring modern intervention (Dawe et al. 2011).

Our findings suggest that the plant communities of 
created marshes resemble natural marshes in their species 
composition, as measured by species richness, within 
decades. This is surprising given most sites were planted 
with almost exclusively C. lyngbyei, and even multi-species 
plantings rarely exceeded five species (Adams and Williams 
2004). These findings align with the 15-year observations 
of Mitsch et al. (2012), who found that 90–95% of their 
final species richness was achieved within five years of 
marsh construction. The comparable richness between 
created and reference marsh plots may be a result of several 
factors, including dispersal from upstream or adjacent source 
populations, despite extensive habitat fragmentation that has 
widened dispersal distances in the estuary. The small size 
of most projects may also increase their susceptibility to 
colonization. Donor plugs (golf hole-sized plugs extracted 
from nearby marshes) used to vegetate many of the projects 
may have possessed viable and diverse seed assemblages. 
One final explanation is that the act of disturbance required 
to create novel marsh habitats may support colonization by 
novel species, resulting in elevated richness. Nevertheless 
these findings show that created marsh plant communities 
in the FRE can possess a rich diversity of species within 
a short period of time, which is important for their 
ecological function and resilience in the context of global 
environmental change (Zedler et al. 2001; Steudel et al. 
2011; Fitzgerald et al. 2021; Hong et al. 2022).

Future Studies

Although this study points towards boat wakes and herbivory 
as possible drivers of created marsh recession in the FRE, 
mechanistic studies are required to further understand their 
impacts. To our knowledge no estuary-wide boat wake study 
has occurred to date, and dedicated Canada Goose research 
only commenced recently. Interestingly, both of these stress-
ors have been accounted for in several past project designs, 

through features such as offshore sheer booms, piling and 
timber walls, and rock sills to mitigate wake erosion, or 
exclosure fencing and planting of less-palatable species to 
reduce herbivory (Kistritz et al. 1992; Adams and Williams 
2004). Despite these efforts, the findings of this and other 
studies indicate these mitigation approaches may be tem-
porary “band-aid” solutions, and that research-informed 
regional management may be required to produce meaning-
ful change (Kistritz 1995; Lievesley et al. 2016).

We quantified losses in created marshes, but the status 
of nearby reference marshes remains unknown and requires 
further investigation. Reference sites were not included in 
the recession analysis, largely because they have no per-
manent foreshore boundary (e.g., rock sill) to refer to for 
easily documenting historical change. As a result, we are 
unable to evaluate whether the recession we observed was 
an unique issue to created marshes, suggesting their com-
promised resilience, or whether this is reflective of a larger 
recession issue occurring throughout the estuary (Kistritz 
et al. 1992). Future research should investigate this further, 
using historical imagery and other knowledge sources (e.g., 
records, maps, photos), to quantify large-scale changes in 
marsh foreshores of the FRE, and shed further light on the 
health and resilience of these ecosystems.

In addition to serving as a springboard for future research, 
our findings should provide incentive for testing new and 
innovative approaches for marsh creation in the FRE and 
similar systems. Most historical project designs contain 
forms of hard engineering, particularly riprap sills. This 
approach has been largely effective at meeting regulatory 
criteria (i.e., target vegetative cover after a 5-year period), 
but our findings suggest these conventional designs may 
be limited in their ability to support self-adapting, resilient 
marshes that can persist in a changing environment (Mitchell 
and Bilkovic 2019). Novel approaches that shift away from 
static, hard-engineered designs and instead utilize natural 
processes, such as sediment accretion, accretion/vegetation 
feedback loops, and facilitation should be explored further 
(Silliman et al. 2015; Bilkovic and Mitchell 2017; Mitchell 
and Bilkovic 2019).

Conclusion

The FRE has been heavily modified by human activity and 
continues to be threatened by habitat loss and degradation 
to this day. Marsh creation projects have been perceived as 
a tool for mitigating losses in fish habitat productivity, but 
the long-term outcomes of these projects have never been 
evaluated to this detail. Given the number and scale of pro-
posed offsetting projects on the horizon, we believe this 
study is timely in providing a preliminary investigation into 
what influences the long-term success or failure of created 
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marsh projects. Our findings suggest that regardless of pro-
ject age, a successful long-term outcome is not guaranteed. 
While some projects have remained resilient to vegetation 
recession and invasibility after several decades, we observed 
recession in over half of the study sites, equating to 9.3% of 
created marsh area, and invasive species such as Typha spp. 
and P. arundinacea continue to displace created marsh plant 
communities. Our findings demonstrate that those designing, 
constructing, and managing these sites can mitigate marsh 
recession by factors such as project location, elevation, and 
sound implementation and maintenance, particularly soon 
after completion. Innovative new design approaches that can 
utilise existing natural processes such as sediment accre-
tion and facilitation should also be experimentally tested 
to further mitigate recession. Invasive species management 
will largely depend on project design and location, with 
Typha spp. posing the greatest threat to sites near the delta 
front and in embayments, while other species such as L. 
salicaria, I. pseudacorus, and P. arundinacea increase with 
distance upriver. We hope lessons from these investigations 
will advance the knowledge of tidal marsh creation, inform 
management approaches, and serve as stepping stones for 
further research in the FRE and other urbanized estuaries.
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